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DETERMINATION OF LOADS ON A FLEXTBLE LAUNCH VEHICLE
DURING ASCENT THROUGH WINDS

By Harold C. Lester and Dennis F. Collins
Iangley Research Center

SUMMARY

An analytical procedure is developed for computing the pitch plane motions
and bending moments experienced by a flexible launch vehicle during ascent
through atmospheric winds. Structural bending is approximated by the super-
position of several beam modes, and propellant slosh is treated by a mechanical
analogy. Nonlinear, time-dependent equations of motion are derived by using a
variational procedure which is applicable to variable mass systems. As an
illustrative example, the method is applied to a typical launch vehicle and the
responses computed numerically by means of an equivalent fifth-order integra-
tion. The method is particularly sultable for use with detailed wind velocity
profiles such as those obtained by the smoke-trail technique.

INTRODUCTION

As a launch vehicle ascends through the atmosphere, it experiences dis-
turbing influences from many sources, among which are winds, wind shears, and
gusts. The loads resulting from the wind environment represent a major con-
tribution to the total flight loads. Satisfactory structural design of a launch
vehicle, therefore, requires that the system response to winds be fully under-
stood in order to assure adequate structural integrity.

The prediction of launch-vehicle wind loads has usually been divided into
two parts: (1) the rigid-body loads associated with winds and wind shears and
(2) the flexible body loads resulting from response to gusts. With this approach,
the rigid-body loads are determined by flying the rigid vehicle, described by
equations with time-varying coefficlents, through synthetic or measured wind pro-
files. Typical of such methods are the pitch plane analysis developed in refer-
ence 1 and the three-dimensional formulation, which includes wind directionality
effects, presented in references 2 and 3. The synthetic wind profiles developed
in reference 4 are examples of the inputs used in investigations of this type.
Gust loads are estimated by analyzing the perturbation motion about discrete
points in the boost trajectory. Fixed coefficient equations accounting for the
structural flexibility degrees of freedom (for example, ref. 5) and gust inputs
in the form of steps or sinusolds and ramps of different wavelengths are employed
for this purpose. Design loads are determined by superposition of the rigid-
body wind and wind-shear loads and gust loads. Although such an approach can be




justified on the basis of available measured wind data, improved wind-measurement
techniques (ref. 6) indicate a need for a refined procedure.

In this paper, an analytical procedure 1s developed for computing the
motions and bending moments experienced by a flexible launch vehicle during
ascent through an atmospheric wind field. The procedure represents an exten-
sion of the methods previously discussed in that the effects of structural
bending, time-dependent coefficients, and detailed wind inputs measured by the
improved methods (ref. 6) and representing the combined influence of winds,
wind shears, and gusts are considered jointly. Pitch plane motion is considered
and referenced to a body-fixed Cartesian coordinate system. Structural bending
is represented by the superposition of several free-free beam modes and a simple
spring-mass analogy 1is used to approximate propellant slosh. Nonlinear equa-
tions of motion which have time-dependent coefficients are derived by using a
variational procedure (ref. 7) which is applicable to variable mass systems.
Both quasi-steady and slender-body momentum aerodynamic coefficients are derived.
The nonlinear equations of motion are solved numerically on a digital computer
by means of an equivalent fifth-order integration using a fourth-order

Runge-Kutta routine.

The paper is divided into three major sectlons: Analysis, Computer
Program, and Application and Results. In the section "Analysis" the governing
equations are derived and the complete set of resulting equations are then sum-
marized in an appendix. Salient features of the digital computer solution are
discussed in the section "Computer Program." As reported in the section
"Application and Results," the method is applied to a representative launch
vehicle and the motions and bending moments computed for flight through a smcke-

trail-derived wind velocity profile.
SYMBOLS

Aq,A0 ‘ cross-sectional area of thrust chamber exit face, gimbaled and
nongimbaled engines, respectively, sq ft

2o control system gain
: . To - a5,Ca(M)
ax assumed absolute axial acceleration time history, T ;
ft/sec2

ca(M) axial-force coefficient

L 1
CNG(M) slope of normal-force coefficient, d/\ Cna(X:M) dx, radian”

0
Cp generalized bending-moment coefficient, used with appropriate sub-

script (see appendix D)




Cj generalized aerodynamic coefficlent associated with jth bending
mode, used with appropriate subscript (see appendixes A and B)

Cm generalized pitching-moment coefficient, used with appropriate sub-
script (see appendixes A and B)
L
Cma(M) slope of pitching-moment coefficient, u/\ (x - xcg)cna(x,M) dx,
0
ft/radian
Cn generalized aerodynamic coefficient, used with appropriate sub-

script (see appendixes A and B)

cna(x,M) slope of local normal-force coefficient, 1/ft-radian

D dissipation function, ft-1b

d;,do dlstance from gimbal point to nozzle exit plane, gimbaled and non-
gimbaled engines, respectively, ft

E total kinetic energy, ff—lb

Fa,x’ Fa’y component of aerodynamic force in x- and y-direction, respectively,

1b

Fg,x: E%JY component of gravity force in x- and y-direction, respectively, 1b

Fp,x: Fp,y component of propulsive force in x- and y-direction, respectively,
1b

FX,Fy component of arbitrary foree in x- and y-direction, respectively, 1b

g gravitational acceleration constant, ft/sec2

H,R inertial axes (see fig. 1)

h,r coordinates along inertial axes, denoting altitude and range,
respectively, ft

Icg mass moment of inertia of launch vehicle (less engines) about center
of gravity, lb-sec®-ft

Ies Ig.1 mass moment of inertia of all engines and gimbaled engine, respec-

? tively, about gimbal point, lb-sec®-ft

i,J modal indices

e e e

i, J,k unit vectors



K., Ke, Ko control system gains, sec, 1/sec, and 1/sec, respectively
k propellant slosh index
L length of launch vehicle, ft
1(x,t), 17(x,t), lateral serodynamic, inertial, and gravitational loading,
1g(%,t) respectively, per unit length, 1b/ft
Vi, w
M Mach number, -——I—
Vs
Ma,cg aerodynamic pitching moment about center of gravity, ft-1b
Mb,n bending moment at station x = x, ., ft-1b
b4
Meg arbitrary pitching moment about center of gravity, ft-1b
Mp propulsive pitching moment gbout center of gravity, ft-1b
m(x,t) launch-vehicle mass distribution per unit length, less engines,
lb-sec?
sq ft
m(ﬂl):m(ﬂz) mass distribution per unit length, gimbaled and nongimbaled
engines, respectivel, }EZEEEE
ng J P y} Sq_ ft

. . lb-sec2

m,, me,l mass of all engines and gimbaled engine, respectively, ——EE———
ey 1b-sec?
m§ generalized mass assoclated with ith bending mode, 5t
lb-sec2
mye propellant slosh mass, -
. lb-sec2
mg total mass, launch vehicle plus englnes, 5t
Pe. 1’ Pe, o exhaust pressure, gimbaled and nongimbaled engines, respectlively,
’ 7 1b/ft?

Po atmospheric pressure at altitude h, 1b/ft2
Qj,a generalized aerodynamic force associated with jth bending mode, 1b




Tes Te,l

Ty Tv,l

generalized propulsive force associated with Jjth bending mode, 1b

generalized force associated with particular degree of freedom Bi

dynamic pressure, %pVﬁ,WE, 1b/sq £t
generalized coordinate associated with ith bending mode, ft

position vector locating representative point on structural center
line relative to inertial (H,R) frame, ft (see fig. 1)

position vector locating center of gravity of launch vehicle rela-
tive to origin of inertial (H,R) frame, ft (see fig. 1)

launch-vehicle cross-sectional area of revolution, sq ft

mass static unbalance of launch vehicle (less engines) about center
of gravity, 1b-sec?

mass static unbalance of all engines and gimbaled engine, respec-
tively, about gimbal point, 1b-sec?

aerodynamic reference area, sq ft
1

Laplace transform variable, sec”

total thrust of all engines and gimbaled engine, respectively, 1b

total vacuum thrust of all engines and gimbaled engine, respec-
tively, 1b

gimbaled engine load torques, ft-1b

time, sec
potential energy, ft-1b

unit step function

elastic displacement of structural center line, EE: Pi(x) q4(t), ft
i

velocity vector of particular slosh mass, ft/sec

center-of-gravity velocity of launch vehicle, ft/sec



w(x,t)

Wl,W2

X%

Xa,Xe,Xé

velocity of launch vehicle relative to wind, ft/sec

velocity vector of point on deformed structural center line of
launch vehicle, ft/sec

velocity vector of point on gimbaled and nongimbaled engines,
respectively, ft/sec

velocity of sound at altitude h, ft/sec

component of center-of-gravity velocity vector along X- and Y-axis,
respectively, ft/sec

wind velocity, ft/sec

relative velocity of exhaust particles to thrust chamber exit face,
gilmbaled and nongimbaled engines, respectively, ft/sec

downwash, ft/sec

mass-Tlow rate through gimbaled and nongimbaled englnes, respec-
tively, lb-sec/ft

body-fixed coordinate axes (see fig. 1)
coordinates along X and Y body axes, ft

coordinate of bending-moment station, ft
center-of-gravity location, ft
propellant slosh mass location, ft

coordinate locating angle-of-attack sensor, attitude sensor, and
attitude-rate sensor, respectively, ft

rigid-body angle of attack, 6 - ¥, radians

angle of attack measured by angle-of-attack sensor, radians

wind-induced angle of attack, radians

arbitrary generalized coordinate

flight-path angle - that is, angle velocity vector VL makes with
horizontal, radians

gimbaled engine deflection angle (gimbal angle), radians



Hy5Ho

e,l

Er

Ex

gimbaled engine command function, radians
viscous damping ratio of ith bending mode

coordinate measured aft from gimbal point along gimbaled and non-
gimbaled engines, respectively, ©t

attitude and attitude command angle, respectively, radians
error angle, O, - Op, radians
feedback angle, radians

propellant slosh coordinate as measured from deformed structural
center line, ft

control system gains, sec and dimensionless, respectively

viscous damping ratio associated with gimbaled engine

filter constant

viscous damping ratio assoclated with propellant slosh modes

lb-sec2

atmospheric density at altitude h, M
ft

displacement of ith mode

slosh frequency parameter, radiansg/ft
gimbaled-engine constant, radians/sec

natural frequency of gimbaled engine, radians/sec

filter constant, radians/sec
natural frequency of ith bending mode, radians/sec

natural frequency of propellant slosh spring-mass systems,
radians/sec

A dot over a variable indicates differentiation with respect to time.

A prime with a variable indicates differentiation with respect to x.



An arrow over a variable indicates a vector.

A bar over a variable indicates a Laplace transformation.
ANATYSTS

In this section the dynamical equations governing the planar motion of an
ascending flexible launch vehlcle are developed. The vehicle is consldered to
be autopilot controlled and subjected to the disturbing influence of atmospheric

winds.

Mathematical Model

General.- The coordinate system used herein is illustrated in figure 1.
Motion is referenced to a Cartesian coordinate system (x,y) fixed in the
undeformed rigid body and oriented with respect to the flat earth horizontal
by the attitude angle 6. Motion is constrained to the pitch plane. The center-

of -gravity velocity vector V; is oriented to the local horizontal by 7y, the

flight-path angle. The elastic displacement of the vehicle structure, relative
to the undeformed center line (X-axis), is given by the function u(x,t) which
is discussed in the following section. Propellant sloshing is simulated by
spring mass systems. Control forces are produced by swiveling the thrust cham-
bers of all or some of the rocket engines through an angle & 1in response to
commands provided by an autopilot. The autopilot stabilizes the vehicle and
guides it along a preprogramed flight path. External disturbances are assumed
to come from horizontal winds whose relation to the center-of-gravity velocity
vector is shown in the vector diagram of figure 1.

Bending modes.- Bending of a launch~-vehicle structure is approximated by
the center-line deflection of an equivalent free-free beam with nonuniform mass
and stiffness properties. It is assumed that adequate representation 1s pos-
sible with the superposition of a finite number of terms in the series

a(t) = ) (0 as(6) (1)
i

where @;(x) represents the free-free beam modes or eigenfunctions and q;(t)

represents the related generalized coordinates. The mode shapes @;(x) are

functions solely of the mass and stiffness properties exhibited at a particular
time in the trajectory and represent known input quantities. The generalized
coordinates qi(t) determine the contributlon of each mode and, thus, represent

independent degrees of freedom.

Several methods (for example, refs. 8 and 9) are available for the computa-
tion of the free-free bending modes. The derivation presented herein assumes

8



that the bending modes are computed at several discrete times in the ascent
trajectory by using simple beam theory. The modes are thus orthogonal with
respect to the weighting function m(x,t), that is, running mass. Transverse
shear and/or rotary inertia effects may be handled by including these second-
order terms in the eigenvalue problem and modifying the generalized mass and
orthogonality expressions accordingly (ref. 10). Bending modes are computed
with engine masses uncoupled (removed) from the launch-vehicle structure and
liquid propellants, if any, assumed frozen. Dynamical effects of the engine
masses are included through inertial coupling in the equations of motion.

Propellant slosh.- A spring-mass analogy is employed to simulate liquid
propellant motion. This analogy has been developed in the literature (refs. 1,
11, and 12, for example) for a variety of tank configurations. Essentially,
the sloshing liquid is replaced by a spring-mounted mass which duplicates the
resultant force exerted on the tank by the liguid when the fundamental slosh
mode 1s excited at its resonant frequency. The parameters required by this
representation are: slosh mass myg, natural frequency ax, and slosh mass

location xi. These quantities are functions of the acceleration field and
the ratio of fluid depth to tank radius and mey be evaluated from information
available in the previously cited literature. Viscosity, surface tension,

and mechanical devices, such as baffles, provide sources of energy dissipation
in sloshing liquids. For the analysis herein, an equivalent viscous damping
factor &, has been inserted in each slosh degree of freedom, Approximate

values of this parameter mey be established on the basis of information avail-
able in the previously mentioned sources or from experimental investigations
(for example, refs. 13 and 14).

Method of Analysis

The derivation of the equations of motion is based on the results of a
variational procedure (ref. 7) developed from momentum considerations. Part
of the variational principle, as stated therein, is readily recognized as
having the same form as Lagrange's equations and it will be these operations
that are presented in this section. However, whereas the classical derivation
of Lagrange's equations is based on the assumption of constant mass, no such
requirement is imposed on the operations implied by the variational principle
presented in reference 7. Hereafter, the term "Lagrange's equations" will be
interpreted as having the same meaning as established in the context of refer-
erence 7. In addition, it should be noted that the variational principle cited
yields equivalent generalized force terms (appendix C) which account for the
distributed loading exerted on a launch-vehicle structure by the internal
momentum flux of the flowing propellants. The distributed loading, when inte-
grated, yields the principle thrust terms and additional contributions which
account for the dynamic coupling of the propellant flow. Although treated in
appendix C, these effects are excluded from the equations of motion.

Lagrange's equations.- A general form of Lagrange's equations suitable for
variable mass systems and expressed in the classical form, that is, referenced
to an inertial (space-fixed) frame has been developed in reference 7. TFor the




analysis presented herein, it is convenient to reference the motion of the
launch vehicle to the rotating frame (X,Y) illustrated in figure 1. The
classical expression of Lagrange's equations must therefore be transformed to a
form which is valid in the rotating coordinate system. Details of the transfor-
mation may be obtained from references 15 and 16. (A similar, but less general,
form is summarized in ref. 17.) When transformed, Lagrange's equations for the
rigid-body degrees of freedom (translation and pitch) assume the following
forms:

d O3E s OE U Z
E‘Eﬁ- o S@-’- sin © BH = FX (28.)
4 3 , 58 U _ Z
3t o, +6 v + cos 8 T Fy (2b)
A, W _, E L W_ 2
X oy T Vo, Heg (2e)

where U has been assumed independent of r.

Lagrange's equations for the remaining degrees of freedom (bending, pro-
pellant slosh, and gimbaled engine) remain unchanged when transformed and have

the form

4 OF OE ,oU , D _ }:
3t 5B op; ey OBy L. Bt (3)

i

vhere B3 represents a particular coordinate (degree of freedom), and a dis-
sipation function D has been added.

Kinetic energy.- The derivation is initiated by writing the total kinetic
energy of the system. It is assumed that the mass of the vehicle is distributed
along the structural center line. From coordinate system considerations (as
illustrated in fig. 1), the position vector locating a point on the structural
center line relative to the origin of the inertial frame (H,R) is given by

R=FR, + I(x - xcg) +73 Z $1(x) q4(t)
i

vhere @;(x) represents the orthogonal free-free mode shapes and q;(t) repre-
sents the associated generalized coordinates. The vector Rop, expressed in

space=fixed components, locates the center of gravity of the launch vehicle
relative to the inertial origin. Perturbations of the center of gravity normal

10



to the vehicle center line resulting from displacements of the structure,
engines, and propellant slosh masses are neglected.

The absolute velocity vector V} of a point on the structural center line
may be determined by differentiating the position vector ﬁi Since the body
axes (X,Y) rotate, this differentiating must account for the time rate of change

of the direction of the unit vectors T and ﬁi Differentiating f? and noting
that

CE Y
at o
'9
d .
2
dat

-
produces the following equation for the velocity vector Vp:

'\T’P = % = ﬁ’o + T -:"ccg -8 Z $; (x) q; ()] + ?é(x - xcg) + Zg‘i(X) a4 (¢)

If the absolute velocity vector ﬁz of the center of gravity 1is instantaneously
resolved into components along the body-fixed (X,Y) axes, that is,

the vector V; may be expressed in the following form:

Vo = {’vx - icg -8 E: Py (x) 9 ()| + E;Vy + é(x - xcg) + EE: By (x) aq; (t)
T i

(&)
With the assumption of small engine rotation angles and elastic deforma-
tions, the absolute velocity vector V;,l of a representative point on the

gimbaled engine may be determined in a similar manner and is given by the
following equation:



vp’l = Vy - %og - éﬂ1[5 - Z #,(0) q.i(t):l -6 Z #:(0) q;(t) + nl[ﬁ - Z #1(0) q_i(tﬂlié - Z #,(0) c'li(tiI
: i i

+ vy - 6'(::(:g + ’11) + z $1(0) 4;(¢) + Tll[é’ - Z ¢i(0) ‘ii(tﬁ (5)

i i

The velocity vector V;’g for a point on the center line of the nongimbaled

engine may be obtained from equation (5) simply by nulling the ginmbaled engine
deflection angle (& = 0) and is given as follows:

V2 =I’[vx ~ gt b ) B10) gy (8) -8 ) Fi(0) a(e) vy ) ) #1(0) $3(0) ay(v) ad(tﬂ
1 1 F

+ ?Ifly - é(xcg + T12) + Z #1(0) q4(t) - No Z ¢j'_(0) "li(t)jl (6)

i i

-
In addition, the absclute velocity vector Vi of a representative slosh mass

is required and is given as follows:
. - [
T = Vo - 60T + Ned (7)

With the use of equations (4) to (7), the total kinetic energy of the configura-
tion mey be formulated as

E =% \/C‘)L<VP . ?P)m(x,t) dx +% /c‘)d2<vp,2 . %’2)]11(“2) ang +% Ldl(?p,l . %,l)m(ﬂl) an;

+% Z m (622 - 26)\1:!}/;( -6 Z B1(%c)ay (t) - :':cgji + 7\]% + 2)'\kl}'y * B(x - Xog) + Z ¢i(xk) qi(t;J (8)
i

It 1s convenlent to define certain integral forms and combinations thereof which
occur frequently in the ensuing development. The following definitions are
established:

d;
re, = [ n(m) am (98)

12



do
L

mo= [ n(x,t) ax + mg (9¢)
0

L
m1=fo n(x,t) fi(x) gy(x)ax (i = 3)

(9d)
m; =0 (i % J)
d;
Se,1 = L/; nlm(nl) dn, (9e)
dp
Se = /; ng(Mz) dng + Sg (97)
L
Seg = L/; (x - xcg)m(x,t) dx (9g)
dy
Ie,1 = _/; nfm(nl) dny (9h)
dp
Ie = k/; ﬂgm(ﬂg) dny + I3 (91)
L 2
Teg = [ n0)(x - xeg) ax (95)
Scg - (mexcg +8g) =0 (9k)
L
L/; m(x,t) @;(x) ax =0 (91)
L
L/;) (x - xcg)m(x,t) Pi(x) ax = 0 (9m)

Potential energy and dissipation function.- If engine rotation angles and
elastic deformations are assumed small, as was done previously, the potential
energy of the system may be written as follows:

13



(M 1

L
U -% Z mi“’j_zqf(t) + Z mk“’li 2 % Ie,lms,lﬁz +g L E: + (x - xcg)sin 8 + cos @ z Py (x) qi(tﬂm(x,t) dx + g cos ez mA
i k

i i

a4
+ 8 J; {J - Xgg 510 @ + cos B Z $1(0) q(t) + 1, cos e’:a - z ¢£(c) qi(tﬂ - qy sin %m(nl) any + & fdQEl - xoq stn 0
o]

+ cos B Z $1(0) q4(t) - n, cos 8 Z ¢;_(o) a;(t) = 1o sin%]m(qz) dn, (10)
i i

The first three terms in equation (10) represent, respectively, the deforma-
tional strain energy (refs. 5, 8, and 10) of the structure, the strain energy
of the propellant slosh spring mass systems, and the strain energy of the
gimbaled engine backup structure and positioning actuator. Remaining terms in
the expression for U define the gravitational potential. With the use of
equations (9), the potential U may be reduced to the following form:

U =mgen + 3 z myefel(t) + z mk(% o\ + @y cos e) +-J§'Ie’lm§,152 +g cos e[}e z B1(0) qy(t) + 5, 15 - Se Z #i(0) qi(t{l
I - 1 I

k
(11}

Tt is convenient to account for the dissipative (damping) forces through a
velocity dependent potential. (See ref. 18.) The dissipation function D
for the system is assumed in the following form:

) .2 2
D = Z my Ly E5(t) + Z Dt + Te,18e,1%%,10 (12)
K

Structural damping, as represented by the first term in equation (12), is
treated as an equivalent viscous type (refs. 1 and 5) and is justified on the
basis that the structural modes are lightly demped with little dissipative
cross-coupling. The second term in equation (12) gives the propellant slosh
damping forces, as discussed previously. Dissipative effects associated with
the gimbaled engine backup structure and positioning actuator are, likewise,
treated as an equivalent viscous type.

Equations of Motion

The equations of motion are derived by means of a modified form of
Lagrange's equations (egs. (2) and (3)). Application of the equations is
illustrated by a detailed derivation of the equation governing motion along
the X body axis. Equations for the remaining degrees of freedom msy be
obtained in a similar manner and are merely stated after dropping negligible
terms. The control system equations and expressions for the applied forces
are developed in subsequent sections. The equations are summerized in

appendix E.

14



Axial motion equation.- The differential equation governing motion of the
launch vehicle along the X body axis may be obtained from the application of
equation (2a). The first term in equation (2a) requires determining the partial
derivative of the kinetic energy E with respect to the velocity Vy; that is,

BE = L . BVP d2 av’z dl a? .
A (?” wpet) o+ f e - pd)atee) ang v [0 a5;1>'“("1) - 8 z i (23)

o}

From equations (4), (5), and (6) the partial derivatives

\
T

Bl (1%)

T
oVx p

may be obtalned and when substituted into equation (13) produce the following
equation:

L 4
STEX = _/; E’x - %eg - 6 Z B1(x) Qi(tii m(x,t) ax + A QE’x - %cg + b }; $,(0) qu(t) - é Z $1(0) q4(t)

1

J 1

+ T’ll[s - Z ¢;_(0) qi(tﬂ[ﬁ‘; - Z ¢£(O) éi(tﬂ} m('ql) any -8 Z m Ny

i 1 . a
*+ Ny Z Z ¢1(0) ¢j(0) q,(t) qj(tﬂ m(nz) dnp + /; l{’x _ "‘cg - qlé[s - Z ¢i(0) qi(tﬁ -8 z #, (0) qi(t)

i X

When the previously established definitions given by equations (9) are
used, the integrations can be performed and the expression for BE/BVx reduced
to the following form:
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’S_\E,; = mg(Vx - %og) - meb Z $1(0) qi(t) - 8¢ 168 + Seb Z $,(0) g (%)
1

+ 8g,186 - S¢ 18 Z $,(0) 4;(t) - 5,15 Z $:(0) a ()
i 1

rs, ZZ 810 $(0) ay() &4(8) =8 ) mare (15)
3 k

Lagrange's equation (eq. (2a)) also requires the first time derivative of equa-
tion (15). In carrying out this operation, it should be noted that the analyt-
ical foundation for the propellant slosh analogy requires that the parameters
me, Wy, Xk, and &) be treated as quasi-steady functions. Differentiating

equation (15) with respect to time produces the following equation:
g_tg%c = g (Tx - xs) + iy (T = Jeog) - meE Z $,(0) 4, (t) + 8 Z #,(0) qi(tﬂ * s[e Z $:(0) a,(t) + 8 Z $3(0) aiuﬂ
i i 1 i

2
+ S {[Z $1(0) éi(tﬂ + Z Z #;(0) ¢3(o) qq(t) 'ciJ(t)} + se,l(s'é + é2) - se,l(éé + é's)-.se’l[eé Z #$;(0) &;(¢)
i J

i i

+8 Z #1(0) ?ii(tZ, - se’lES Z #;(0) qi(til - z mk(é)'\k +'e'7\k) (16)
I

k

In a similar manner the partial derivative of the kinetic energy with respect
to the velocity Vy may be obtained as follows:

a . . 1 . N
S\% = mgVy + mg Z ;(0) &;(t) + Se,10 - Se Z g.(0) q;(t) + ; mN,  (17)

Finally, the partial derivative of the potential U (eq. (11)) with respect to
the altitude h produces the gravity force as follows:

oU _
a_h =mg (18)

In order to simplify the equations, all triple product combinations of 6, 5,

—
and zero, first, and second order time derivatives of 8, 24 ¢;(0) q;(t),
1

and j{: ¢£(O) qi(t) are eliminated from the final equations. Substituting
i
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equations (16), (17), and (18) into equation (2a) produces the following equa-
tion governing motion along the X body axis:

g (7 - Feg) *+ B (T - Reg) - m{eé Y 400 dy) +E Y 4,(0) q&ﬂ - Se,2(288 + 88) + se%é Z $i(0) 4(e) + 8 ) gl(0) wﬂ
i i i
v 5g2(08 487 - se,l[zé Y 100 46 +5 ) F(0) 46 +E ) £1(0) qi(t)} . se{}; }; #:(0) #5(0) Ei(t) 3,(6) + gy(8) ajuﬂ}
i i i

- Z mk(aaxk + 'é)\k)- m8Vy + myg sln @ = Z Fy ' (19)
k

where the right-hand side, that is, Z Fy, represents the summation of the

x-components of all the applled forces not accounted for in the potential TU.

It should be noted that the constituents of the term Z Fyx account for the

aerodynamic and propulsive forces and are discussed in a subsequent section.

Lateral motion equation.- With the use of equation (2b), the equation

governing motion along the Y body axis is obtained as

m ¥y + i Vy + mg Z #1(0) () + Se,lg - Se z $7(0) q;(t) + Z mkxk - §2 Z moAy + m‘.'(vx - icg)é +mg cos 8 = Z Fy  (20)
1 i k k

where the term z Fy represents the summation of the y-components of all the

applied forces not accounted for in the potential U.

Pitch equation.- Finally, the remaining rigid-body equation representing
pitching motion of the launch vehicle about its center of gravity is obtained
by using equation (2c¢) and is

Togh + Togh + mexogh + 28exegh + Ib - me(\'lx - ".‘cs> z $1(0) qq(t) - se,l(\'rx - Eicg)a + se(\'/x - 3&03) z $1(0) qy(t)
T T

- DeXeg Z $1(0) Gy(t) - Se Z $1(0) Gy(t) = 8¢, 1%cgd + Bexog Z $,(0) q4(t) - Ig 18 + T, }; $1(0) 4 (t)
1

+ Z mk[i(xk - xcg) _(\'rx ~ %eg kjl + meVyé Z $1(0) q,(t) + se,lvyéa - SeVyd Z $1(0) q4(¢) - se,laévy

k

(Equation continued on next page)
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+ 5,187y Z $1(0) 43(t) + Se,1vy Z $1(0) a,(+) = Se¥y z Z $,(0) #3(0) y(8) (%) + V43 z mN
i i J k

b8 Y ma) ¢ 3 ) mar(t) (0 +6 Y BEW) +8 ) mAE+ D ) mad+d ) ) mnd () u(®)
i i i k k k i

+ 25 Z Z mk)'\k¢1(xk) q(t) + 28 Z Z mk7\k¢i(xk) 4 (t) + mVgko, + 2:':(:86' (mexcg + Se) -gsin® Z o N
k i k 1 k

- g sin 9|E:ue Z #1(0) qi(t) + 8 18 - Se Z $1(0) qi(ti, = Z Mog (21)
1

The quantity z Mcg represents the summation of the moments of the applied
forces about the center of gravity.

Bending mode equation.- The equation of motion for the jth bending mode is
determined by replacing B; 1in egquation (3) by the coordinate Q37 that is,

iaE_aE+aU+al?=Zqu (22)

vwhere J assumes the successive values 1, 2, 3, . . . up to the number of terms

employed in the series Z g (x) qi(t) (eq. (1)). Using the results of equa-

i
tions (9) and neglecting the higher order terms, as was done previously, gives
the jth bending mode equation in the following form:

mydy(t) + 2mytimidy(e) + myofay(t) + iy (t) - (c-x - "cs)se’lspsj(o) + (Vg - Eog)Be#3(0) Z $1(0) qy(t) + mBy(0)Vy - mex oP3(0)8

- se¢J(o)'e' + mef3(0) Z #$,(0) 4y(e) + 5e,1¢.1(°)g - 8¢$(0) Z ¢£(o) q(t) - se;zi_i(o)w?y + sexcg¢3(o)§ + Ie¢j(o)§
i

- 58}(0) Z $,(0) G, (5) - Tq 26}(0)8 + TB(0) Z B0 y(6) + ) oy ()P - Se(Vx - Bheg)895(0) + mo (Vs - 2kog)éf(0)
k

- quJ(t)QQ + me5¢,j(°) cos 8 - Seg¢3(0) cos 6 - 82 z mk7‘k¢;j(xk) = z Qg (23)
k 3
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The generalized force j{: qu assoclated with the Jjth bending mode will be
developed in a subsequent section.

Propellant slosh equation.- The propellant slosh equation is determined
similarly from equation (3) by replacing By with the coordinate N;. Since

the slosh masses are excited solely by dynamic coupling and not by any external
sources, the results are equated to zero. When the indicated operations are
performed, the equation of motion for the propellant slosh coordinate Ng
reduces to

mehy + 2oy + maghy + mly + mg (x - Xeg) + My }Z Bixx) 1(t) - myb® ;{: B () a1(8) - meh®
I T

+ mké(vx - Efccg) + myg cos 6 = 0 (24)

where k assumes the successive values 1, 2, 3, . . . up to the number of
independent slosh degrees of freedom utilized.

Gimbaled engine equation.- The equation of motion for the gimbaled engine
is obtained by replacing B in equation (3) with the coordinate 5:

% : 2 o _ :
Ie,ls + Z[e’lge’lﬂ)e,la + Ie,la)e,la = Q6 + Tl (25)

vwhere the load torques T; are given by the following equation:

1 . L . - 3 1 L] £ .. -
s S Z $,(0) qy(t) - se,l(vx - xcg)a + se,l(vx - xcg)z $1(0) ay(8) - Se,1Vy + S 18%cg + Te 18 - Se1 Z $4(0) (%)
i 1

- 8¢,1(Vx - 2keg)b - S¢,18 cos © (26)

The generalized force, or control torque, QS ls discussed in the section
entitled "Gimbaled Engine Commands."

Control Equations

Feedback considerations.- The general mathematical description of a
launch-vehicle control system is not attempted due to the wide variety pres-
ently employed. A typical control system is shown in figure 2. The input
to the loop is a pitch command 6, which serves as an attitude reference
during flight. Three types of control sensors are indicated. These are:

(1) an attitude sensor located at coordinate xg, (2) an attitude rate sensor

located at coordinate x§, and (3) an angle-of-attack measuring device located

at coordinaste x,. These instruments not only sense the rigld motion, but 1in
addition, due to flexing of the vehicle's structure respond to local changes in
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the slope and displacement of the structural center line. That part of the
feedback signal 6y proportional to local bending motion is commonly termed
"the structural feedback” and is associated with many structural dynamic prob-
lems in lsunch vehicles.

Transforming from the frequency plane to the time domain, the feedback
equation may be written as

0p =6 + ZE: ¢£(XB) qi(t) + py 6 + EE: ¢£(Xé) Qi(t) + g (27)
i i

where the local measured angle of attack is given by the following equation:

W -
4 i

ag =+ ay t j{: ¢£(Xa) q; (t) - v:%—-é(xa - Xcg) + E: ¢i(xa> qi(t) (28)

In equations (27) and (28), the terms proportional to qi(t) and éi(t) repre-

sent the structural feedback.

A filter-amplifier network is included in the forward loop of the control
system for compensation. In parallel with the filter is an integrator to reduce
steady-state errors. The filter equations may be written as follows:

.o * t
Be + & pwpde + w%&c = aq Kfée + wfcpf + 2ngf)ee + be? Jﬁ B dt
0 (29)

ee=ec-ef

Gimbaled engine commands.- The gimbaled thrust chamber or engine is posi-
tioned by an actuator in response to commands from the control system. Gener-
ally, the positioning actuator is some sort of electrohydraulic system which
exhibits a nonlinear response for small amplitude oscillations. However,
the type of nonlinearities involved - gimbal coulomb friction and fluid flow
and compressibility effects, for example - are amenable to analysis by linear-
ization processes such as the describing function method. Reference 20 is
such an analysis and indicates that the generalized force, or applied correc-
tive torque, Qg exerted on the engine by the actuator may be expressed in the

following form:

t t
Q = Ie,chwg f (B¢ - B) dt + Ko f T, dt (30)
0 0
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where the commanded engine attitude is B8, (fig. 3) and the engine load torques
T; are given by equation (26)}. It should be noted that equation (30) implicitly
assumes that the actuator does not exert a moment on the structure. Combining
the results of equation (30) with the previous results of equation (25) produces
the following linear equation governing motion of the gimbaled engine.

3¢ - 2 [F Ty Ko v
5+ 2§e,1we,18 + wb,l5 = K.wg k/; (3o - B) dt + T + I 1 h/; T, dt (31)
> 2

Equation (51) characterizes the engine response as conslsting of a second-order
osciliatory component plus a lag and in this sense the parameters ge,l and

me,l have been interpreted as the viscous damping and natural frequency of the

idealized system. In reality, however, these paramters, as well as Ko and K,

are determined from a describing function analysis of the nonlinear actuator.
Other forms of the control torque Qg may be used depending upon the degree

of sophistication required and upon the characteristics of the particular sys-
tem being investigated; examples may be found in the literature. (See, for
example, refs. 1, 5, 10, and 12.)

In addition, a torque is exerted on the thrust chamber by virtue of its
motion and the mass flow of the exhaust gases. An expression for this torque,
which may be categorized as a jet damping effect, is developed in appendix C
(eq. (C17)); however, its contribution in eguation (31) i1s neglected.

Forces Acting on the ILaunch Vehicle

Propulsive forces.- Equations for the propulsive forces and moments asso-
ciated with a launch vehicle employing a single gimbaled thrust chamber, are
derived in appendix C. The propulsive forces evolve from a consideration of
the internal momentum flux which yields a distributed loading proportional to
the local propellant mass flow (egs. (Cl) to (C5)). The distributed loading,
when integrated, yields the principle propulsive forces and moments and addi-
tional terms which account for the integrated effect of the internal propellant
mass transfer.

The results presented in appendix C are easily amended to handle the situa-
tion of both gimbaled and nongimbaled engines. In the ensuing development,
parameters associated with the gimbaled engine are denoted by the subscript 1,
whereas parameters associated with the nongimbaled engine are denoted by the
subscript 2. Parameters common to both engines appear without a numerical sub-
script. The following definitions are used:

mt = Wl + W2
Te,1 = Ty,1 - AP, (32)

Te = Ty - (Al + Ao)p,
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where Tv 1 and Ty represent the rated vacuum thrust of the gimbaled engine
and all englnes, respectively, and are defined by the following two equations:

Tv,1 = -¥1Vy * &3P 3
(33)
Ty = Ty,1 = WoVp * AP

It should be noted that ﬁ%, Wy, and v, are negative quantities.

Using the results of equations (32) and (33) and retaining only the princi-
ple thrust terms and the mass-flow-rate terms which cancel with similar terms in
equation (19), the component of the propulsive force along the X body axis
mey be approximsted on the basis of equation (CT).

Fp,x = Te * g (Vx - %eg) (34)

In a similar manner the remaining propulsive forces and moments may be con-

structed and are listed as follows:
~

1 .
Fp,y = “Te,18 + T¢ Z ¢i(o) qi(t) + meVy
i

Mp = T.e,lxcg8 - Texcg ;{: ¢£(0) qi(t) - Te zg: ¢i(o) qi(t)? (35)
i i
Q,p = ~Te,193(0)5 + Tefy(0) Z $1(0) ay(t) )
i

Aerodynamic forces.- Two methods for approximeting the 1ift distribution
on a slender deforming body are summarized herein. Slender-body momentum
theory, as developed in appendix A, provides both a steady and unsteady contri-
bution to the aerodynamic loading but does not include Mach number effects.
The quasi-steady method is discussed in appendix B. This method makes use of
steady-state lift distributions determined either experimentally or analytically.
Hence, quasi-steady aerodynamic forces are Mach number dependent but only approx-
imate the unsteady effects. References 1 and 19 contain additionsl information

on these and other methods for predicting aerodynamic forces.

Using either method, the aerodynamic forces and moments may be expressed in
the form (appendixes A and B)
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Fa,y = Cn,afa + ay) +Cp g6 + Cp, (& + &) + Cn 50 + Z cn,qiqi(t) + Z cn,tiiéi(t) + Z cn’;iiiii(t) (36)
i i

-

Mg cg = Cm,af + oy) + Cp g6 + Cp g(8 + &) + cm’gﬁ + }: cm,qiqi(t) + E: cm,éiéi(t) + E: cm’aiai(t) 370
I 1 I

Q)8 = Cg,a® + o) + Cy g6 +Cy (& + &) + Cy 38 + Z Cy,q,%(t) + Z Cy,4,,(t) + Z CJ,-(ii"ii(t) (38)
1 3 1

where a =6 - 7. An expression for the wind-induced angle of attack ap 1is

derived in the following section. The generalized aerodynamic coefficlents
required in equations (36), (37), and (38) are derived in the appendixes cited.

The axial aerodynamic force or drag may be approximated by the expression
Fa,x = -25cCa(M) (39)
where the coefficient Cp 1s a function of Mach number.

Wind inputs.- Atmospheric winds contribute to the induced aerodynamic
loading through two parameters: dynamic pressure and angle of attack. The
dynemlc pressure q 1s given by the equation

a = 3oVp y (40)

where Vp y 1is the velocity of the launch vehicle relative to the wind. In
the present analysis penetration effects are neglected and Vm,w and a are
defined at the gravity center, that is, Vm,w = Vm,w(xcg:t) and oy = aw(xcgt).
From the vector diagram illustrated in figure 1, the gquantity Vm,w may be

expressed as follows in terms of the center-of-gravity velocity, wind velocity,
and the flight-path angle, by using the law of cosines:

Vi, w = \ﬁs + V2 4+ Vv, cos y (b1)

The magnitude of the center-of-gravity velocity vector is given by the fol-

lowing equation:
J 2 2
Vm = |V + Vy (42)
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and, in a similar manner, an expression for the rigid-body angle of attack a
may be derived.

a = tan-l<:zi> (43)

Again from figure 1, the wind-induced angle of attack a, may be determined
by equating the components of V;,w and V; which are perpendicular to V;

and is given by the following equation:

Vi sin oy
Uy = sin'l<11—————> (44)
Vm,w
Wind velocity and atmospheric density, pressure, and the velocity of sound vary
with altitude. The equation relating altitude to time is

t
h(t) = j;) Vp sin y dt (45)

In a similar manner the range, or distance traveled along the horizontal
inertial axis (fig. 1), is given by the following equation:

t
r(t) = U/\ Vp cos 7 dt (4+6)
0

A summary of equations is presented in appendix E.
COMPUTER PROGRAM

General

The launch-vehicle wind-response equations were programed for solution on
a high-speed digital computer. This section is devoted to a brief description
of the computer routine, its features and scope. An effort was made to keep
the program as general as possible in order to accommodate a variety of vehi-
cles. The program has provisions for as many as three bending and two propel-
lant slosh degrees of freedom. Linear aerodynamic coefficients obtained by
either momentum theory or the quasi-steady method may be used.

Time-dependent input parameters were approximated by using tabulated data
and a linear interpolstion subroutine. For the type of vehicles under con-
slderation, table sizes of 10 to 30 discrete time values were found to render
satisfactory linear approximations of the time varying parameters. The drag
coefficient Cp was defined by a Mach number table of size 4o, that is,
specified at 40 discrete Mach number conditions. In order to accommodate
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detailed wind inputs, the wind velocity Vy was defined by an altitude table

of size 1000. For example, with an altitude ceiling of 60,000 feet the wind
input Vy may be defined about every 60 feet of altitude although the table
may be compressed in certain altitude intervals and expanded in others to
provide maximum definition.

Propellant Slosh Considerations

Propellant sloshing, as previously discussed, was simulated with spring
mass systems. The slosh parameters (™M 5 €y, and Xx) required by this

anglogy may be determined either from analytical studies or experimental data.
The circular slosh frequency ayx Wwas programed, however, to account for its
dependence on the local axial acceleration field. The following equation was
utilized in the computer program to generate slosh frequency:

g = Dy (47)

where ax 1is an assumed (based on a nominal trajectory) absolute axial accel-
eration time history. The parameter Qk is a function of tank geometry and

fluid depth and may be evaluated from information presented in the literature.
(See, for example, refs. 1, 11, and 12.)

Aerodynamic Considerations

Reference to appendix B reveals that the integrands in the quasi-steady
aerodynamic coefficients are functions of Mach number M and that these inte-
grations should be performed in parallel with the solution of the equations
of motion. Such a procedure is unnecessary since the Mach number time his-
tory for a wind-disturbed ascent varies little from that computed for a drag
inclusive particle trajectory. Thus, if quasi-steady aerodynamics are used,
the program requires that a Mach number time relationship be determined or
assumed so that the associated integrations required in the linear aerodynamic
coefficients may be computed externally. Atmospheric density p, pressure p,

and velocity of sound Vg were obtained from a standard atmosphere. (See
ref. 21.)

Bending Moments

The distributed loading exerted on the structure of a launch vehicle may
be integrated to yield bending~-moment time histories. Such a procedure has been
followed in appendix D in order to obtain an equation for the bending moments
(eq. (D8)). Provision was included in the computer program for up to 5 bending-
moment stations (5 time histories). Integrals required in equation (D8) are
submitted in a time table. Either momentum or quasi-steady aerodynamics may
be used. For the latter situation, the aerodynamic integrals (appendix D) are
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computed externally by means of an assumed Mach number time history as dis-
cussed in the preceding section.

Integration Technique

Integration of the nonlinear, time-dependent differential equations was
accomplished through the application of an equivalent fifth-order integration
by means of a fourth-order Runge-Kutta routine. Salient features of the numer-
ical integration scheme are discussed in this section. The dependent variables,
that is, the velocities and displacements, were computed for both a whole and
two half intervals and the results compared to establish whether the computing
interval should be halved, doubled, or remain unchanged. Furthermore, on the
basis of the difference between the whole and two half increment computations,
the latter was improved by a correction procedure known as extrapolation to
zero interval size (see the discussion entitled "Deferred Approach to the Limit,"
ref. 22). The correction factor AZ 1is given by the equation

1
where 77 1s a particular dependent variable computed on the basis of a whole
interval and Zs 1is the same variable established using two half intervals.

The correction factor AZ is added algebraically to Zo in order to obtain
the equivalent fifth-order approximation of the dependent varigble.

The computing interval adjustment criteria was based on the relative error.
The following aspproximation of the relative error was used in the integration
routine: -

Zn = Z
Relative error = J-éi———JLL (49)

15]Zo]|

Computing Interval Adjustment Criteria

(1) If the relative error is greater than its respective maximum allowsable
error the computing interval is halved and the calculation repeated.

(2) If the relative error is less than 1 percent of its maximum allowable
error the computation is accepted, but the interval is doubled for the next

computation.

(3) If neither conditions (1) or (2) are satisfied the compiting interval
remains unchanged.

(4) If the absolute value of a particular dependent variable is less than
107 halving will not be initiated as a result of this variable satisfying
condition (1) nor will doubling be allowed if all other variables satisfy

condition (2).
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(5) Halving criteria for any one dependent variable requires halving for
all, but all variables must satisfy the doubling criteria before the computing
interval 1s doubled.

A maximum allowable error of 10'” was employed in the program for all
dependent variables and the "read-in" or initial computing interval was set at
103 seconds. Partial double precision internal addition (ref. 23) was used
to minimize round-off error. Since the equations are linearly cross-coupled
through the accelerations, a matrix inversion was employed to determine the
acceleration values.

APPLICATION AND RESULTS

Conflguration

In order to illustrate the procedure, the response of a typical launch
vehicle was computed. A preliminary design configuration of a booster system,
which has a thrust-weight ratio of approximately 1.25 at launch, was chosen as
the example launch vehicle.

Mass and stiffness properties.- Structural deformation of the vehicle's
center line was represented by the superposition of the first three free-free
simple beam modes. The mode shapes and frequencies shown in figure 4 were
computed by using the mass and stiffness properties for a flight time of
t = 62 seconds and are indicative of the relative shapes occurring at other
times. The modes are normalized to unity at the gimbal station, that is,
$;(0) = 1.0 for i =1, 2, and 3. The analysis included two slosh degrees of

freedom representing the fundamental modes of the first-stage liquid-oxygen and
fuel tanks, respectively. The frequencies of the two slosh systems 62 seconds
after launch are about 4.7 radians/sec.

Aerodynamics.- Aerodynamic data available for the example vehicle con-
sisted of total normal-force and pitching-moment coefficient CNG(M) and

Cma(M) as presented in figure 5. Shown also in this figure is the axial force
or drag coefficient Cp(M). For illustrative purposes a normal aerodynamic lift
distribution was assumed in the form shown in figure 6 and the parameters Cj
and Co determined so that the assumed distribution produced the same CNQKM)

and Cpy(M) for a given Mach number. The afterbody 1ift was approximated by

an exponential variation; the forebody lift was assumed linear. As has been
previously explained, it is expedient to assume an explicit Mach number time
relationship so that the integrations associated with the quasi-steady coeffi-
cients may be computed externally. The assumed Mach number time variation is
shown in figure 5.

Control system.- The control system and gimbaled engine equations for the
example launch vehicle have been previously discussed. The vehicle, however,
was flown without angle-of-attack feedback (pp = O). Ascent of the vehicle was
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autopilot controlled, rising vertically for the first 15 seconds of flight and
then executing a slow pitch-over maneuver. The pitch program 6, approximates

a no-wind, zero-lift trajectory and is illustrated in figure 7.

Wind profile.- A measured wind profile obtained by the smoke-trail method
(ref. 6) was used as input. The profile is shown in figure 8 and has a maximum
wind velocity of approximately 300 feet per second. The wind was assumed to
increase linearly from zero veloclty at launch to the first smoke-trail data
point and to decrease linearly from the last data point to zero velocity at
60,000 feet. The wind input was defined in a table that specified Vy at
approximately every 82 feet (25 meters) of altitude. It should be noted that
Vyw was used as a tailwind.

Launch-Vehicle Response and Bending ILoads

The example launch vehicle was flown through the measured wind profile
illustrated in figure 8. A brief summary of the resulting response and induced
wind loads is presented in this section.

Trajectory.- Mach number and dynamic pressure time histories for the wind
disturbed ascent trajectory are shown in figure 9(a). The vehicle experiences a
maximum dynamic pressure of T9O0 lb/sq ft about 82 seconds after 1lift-off. The
Mach number at this time 1s approximately 2.0. Because the gquasi-steady aerody-
namic coefficients were computed externally and related to time by means of an
expected or assumed Mach number time relationship, it is of interest to check
the validity of this computational simplification. A comparison of the computed
and assumed Mach numbers is also shown in figure 9(a). The figure indicates
that, due to atmospheric winds, the assumed Mach number differs slightly from
that actually experienced by the vehicle. Figure 9(b) compares the attitude 6
and the command attitude ©0¢. As a result of the wind, a maximum deviation of
about 3° occurs about T7.5 seconds after launch. Also shown is the resulting
angle of attack a + ay and altitude time histories. The vehicle experiences a
peak angle of attack of about -6.7° 26 seconds after 1lift-off due to the pitch-
over maneuver, dJust prior to penetrating the large shear layer, the magnitude of
the angle of attack has decreased to approximately -4 .20 (t = T1.5 seconds).
After passing through the wind shear reversal occurring near an altitude of
36,000 feet (fig. 8), the angle of attack further increases to 3.8° (t = 77.5 sec-
onds) which represents the maximum positive excursion. The product of dynamic
pressure and angle of attack, that is, q(a + ay), which is sometimes used as a
measure of loads, has a maximum value of approximately 2,950°-lb/sq ft about
T7.5 seconds after launch.

Gimbaled engine, bending mode, and slosh responses.- The response of the
gimbaled engine is presented in figure 10. A maximum positive angular dis-
placement of about 3.9° was required. The engine kick at +t = 15 seconds which
starts the vehicle into the pitch program (fig. 7) is apparent as well as the
swiveling between 45 and TO seconds required for control while maneuvering
through the smaller wind shear reversals between 10,000 and 30,000 feet.
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Passage of the launch vehicle through the larger shear reversal near 36,000 feet
required a negative engine rotation (gimbal angle) of about -5.8°.

The response of the three bending modes is illustrated in figure 11, which
shows the time histories of the associated generalized coordinates qi(t) for

i=1, 2, and 3. Oscillations at the modal frequencies are negligible, due to
relatively smooth wind profile. Since the modes are normalized to unity at the
gimbal the results of this figure indicate a maximum first mode deflection at
the gimbal point (x = 0) of about 0.13 foot. The nose deflection at x = L

would be about 3% times larger in the first mode as is apparent from the infor-

mation presented in figure 4. The actual deflection u(x,t) of any point on
the structural center line can be obtained by superposition of the three modes.
For example, if equation (1) and the results of figure 4 are used, the total
nose deflection occurring at a flight time of 62 seconds can be computed as
follows:

u(x=L, t=62) = 3.4(~0.048) + (=10.4)(0.10)(10)~% + 6.1(-0.18)(10)™% = -0.184 £t

The responses of the two slosh masses are illustrated in figure 12. It
should be noted that the subscripts 1 and 2 refer to the first-stage fuel
and liquid-oxygen tanks, respectively. Maximum displacements of the spring mass
systems are less than #0.42 foot. Because of the small amounts of damping
associated with these degrees of freedom, the responses are oscillatory.

Bending moments.- The bending moments produced at five longitudinal sta-
tions along the structural center line were computed. The time histories are
presented in figure 13. Peak negative bending moments occur about 71.5 seconds
after launch. Maximum positive bending moments occur a few seconds later at
approximately 77.5 seconds as a result of the vehicle recovering from the large
wind shear reversal near an altitude of 56,000 feet. A maximum bending moment
of about 0.59 X 106 ft-1b was produced at station Xp,2 = 33.32 feet. A distri-
bution of the bending moments for this time (t = 77.5 seconds), cross-plotted
from figure 13, is presented in figure 1h.

CONCLUDING REMARKS

An analytical procedure has been developed for computing the motions and
bending moments experienced by a flexible launch vehicle during ascent through
atmospheric winds. The method is particularly suitable for use with detailed
wind inputs, such as those obtained by smoke-trail observations, which describe
the combined amplitude, shear, and gust characteristics of the atmospheric wind
environment.

The nonlinear differential equations of motions, which have time-dependent
coefficients, were programed for solution on a high-speed digital computer. As
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an 1llustrative example, the motlons and bending moments were computed for
e typical launch vehicle ascending through a smoke-trail wind velocity profile.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 30, 196k%.
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APPENDIX A

SLENDER-BODY MOMENTUM AERODYNAMICS

In accordance with momentum theory (as discussed in ref. 19) the 1lift per
unit length 1(x,t) developed on a slender body is given by the expression

1x,8) = -0(V,y = - ) [B() w(x,t] (a1)

where S(x) is the local cross-sectional area of revolution and w(x,t) is
the local time~dependent downwash.

From coordinate system considerations (as
illustrated in fig. 1) the downwash may be written as follows (neglecting Xcg):

W) = Vo + (0 = 7) + ) B0 ar(6)] - 6(x - xeg) - ) Filx) 4y(6)

(a2)
where Vm,w

is the velocity of the launch vehicle relative to the wind.

Using
this expression for downwash, the 1ift per unit length may be expanded to the
form:

1(x,t) = —pV,?l’WS'(x)Ee -7) oy - ov;ws%x) Z $i(x) qg(t) + pVp 8" (x)(x - xcg)8 + pVy, 8'(x) Z By (x) a4(¢)
i

- vﬁ’ws(x) 2; ¢;(x) a;(t) + oV (S(x)8 + 20V S(x)

Z ¢;_(X) C.li(t) + p\}m,ws(x) Be - ) +°“3

i

+ D"/'m,wS(X) Z Pi(x) a;(t) + pVp,w8(x) Ké - F) + &y - pe(x - xcg)S(x) - ps(x) Z g(x) G, (t) (43)
1 i

The resultant normal force, pitching moment, and jth generalized force may be

obtained by integrating the distribution over the length in accordance with the
following three eguations:

L 7
Fa,y = L 1(x,t) dx

L
My cg = j; (x - xcg)l(x,t) dx (Ak)

L
e = [ 900 1600 ax

J
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If penetration effects are neglected, by defining Vp y = Vm,w(xcg:t) and
ay = Oy(Xcgst), the coefficients required in equations (36), (37), and (38)

may be determined as follows:

L L
o S'(x) . f s(x)
So |-V f dx + V d
P ol: ¥ Jo 8o m¥ o TS X

L L
S'(x) f s(x)
Ch & = PS,V f X - X ax + ——2 dx
n,e Poo m,W[ o ( cg) So o So

Cn,a

L
. = s(x)
Cn,& = PSoVm,w I;/; 5o ax
L
. S(x
Cn, ¥ =pSoEf (x—xcg) é )dX
0 o]

— 2 L S'(X) ! 2 L S(X) 1
Cn,qi = pso[" m,w L/:) 5o i(x) ax - Vi, w _/; 5o ¢i(x) dx

L o I
n,4; = pSon,w[;/‘o %{.). Pi(x) dx + 2]; ié}oc—) ¢i'(x) dx

L L
- 2 5*(x) : s(x)
Cm,a, = pPSo [—Vm,w L/O (X - Xcg) 3 dx + Vm,w L/:) (X - xcg) 5 ax
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L x )2 8(x) ax
Cm,8 ~ eSo |- O( €/  So

L (x) 4t
f (x - xcg) ——-—SSOX ¢i(x) ax

2
= =V
Cmya3 = pso[ =¥ Jo

L S(x) bs '(x) %
L S(x) 4v ¥ (x - Xeg) 8.
- V]?],W fo (X = XCS\) So ¢i(x) dx + m,w fo

L ?i_}s_)_ 1 d%
[ 0 002 [y ) B
Cm, 8y = PSo'mw|J, © °

L _Q_l ) ax
Cn, &, = pso[-fo (x - Xcg So Py (x ]
P s(x) 4, (x) a%
dx + Vm,w 5o 9
Cj,o = pso{:vm’ f —Ll¢ ) fo °

L _
8(x) ¢.(x) a;k
L s'(x) ax + J
pSOVm,W \—,fo (x - xcg> So ¢3(X) fo B

L g5(x)
psovm,w[fo —_—S}; ¢3(X)d%
s(x) (x) a_;k
C3,6 = [f (x - xe8) S5 P

s'(x {(x) ax
{:vi:"’ fo _Sio—l ¢j(X) ¢i .

n

C3,8

]

C3,&

b s(x) {(x) c*%
5 f s(x) 8(x) #1(x) ax + Im,u fo B By(x) P1
0

m,w So

Los(x) ¢.(x) 1(x) d%
L ge(x) ax+2 | S gy B
Cj,d = pSon,W UO -S_S_(oi— ¢3(X) ¢i(X) fo So

L os(x) () a%
C3ag = pSOEfo = $) Pyl
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APPENDIX B
QUASI-STEADY AERODYNAMICS

Mach number effects can be accounted for through the use of a quasi-steady
type of aerodynamic analysis (ref. 1). With this approach, the normal aero-
dynamic force per unit length may be written as:

W(x)t)

(B1)
Vi, w

1(x,%) = aSo eng(x,M)
where Cna(X:M) is the slope of the local normal-force coefficient and q is

the dynamic pressure. For the present analysis cna(x,M) is assumed independ-

ent of angle of attack and is thus only a function of the running coordinate x
and the Mach number M. The downwash w(x,t) 1is given by equation (A2) and
Vm,w 1s given by equation (41). After substituting for the downwash, the
normal-force distribution (eq. (Bl)) may be expanded to the following form:

Ux,t) = aSo cng(x,M)¢a + ay + Z Pi(x) q4(t) - V—l—[é(x - Xgg) * 2 #y(x) 4 (tﬂ (52)
i m,w T

where a =0 - 7.

The normal force, pitching moment, and generalized aerodynamic force for
the jth bending mode may be obtained from equation (A4). If penetration effects
are neglected, as was done previously in appendix A, the quasi-steady aero-
dynamic coefficients required in equations (36), (37), and (38) may be estab-
lished as follows:

L
Cn,a = 45 d[\ cng(x,M) dx
0

as, f L
Ch g =~ X - X dx
n,o Vm,w J g ( cg) Cna(X,M)
Cn,& =0
Cn,g =0

L
1
Ca,q; = %o L/; g, (x) cn (x,M) ax
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Cn’ é-i

Cm ,‘qi

]

as L .
T J7 9100 caglxm) ax

0

L
aSo f (x - xcg) cna(x,M) ax
0

L
q_So f 2 .
- Tom Jo (x - xcg) cna(x,M) dax

=0

]

0]

L
= a8, A (x - xcg)¢j'_(x) cna(x,M) dx

aSy

Vin, w

L
j:) (x - xcg) P1(x) Cna(x,M) ax

0]

L
S x) epn (x,M) dx
o [ #50x) englc

aS,
Vm,w

L
_/:) (x - xcg) ¢j(x) cng(%,M) ax
0

0

L 1
= g5, A ¢J(X) ¢i(x) cna(x,M) ax

as L
-7 [ 80 10 en ) x

=0
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APPENDIX C

PROPULSIVE FORCES AND PROPELIANT FLOW EFFECTS

Equations for the propulsive forces and moments, including propellant flow
effects, are derived in this appendix. The launch vehicle is assumed to have
a single rocket-engine thrust chamber which swivels to produce the necessary
control forces. The more general case involving both gimbaled and nongimbaled
engines serves only to complicate the analysis and is unnecessary since the
forces and moments assoclated with the latter may be obtained by specializing
the results of the former. In the subsequent development the following symbols,
not previously defined, are used:

A cross-gectional area of thrust chamber exit, sq ft
a perpendicular distance from gimbal point to nozzle exit face, ft
K(x,t) rate of mass flow through a section at coordinate x,
b/‘L om(A,t) a\, Lb-sec
)
x ot ft
Mgy propulsive moment about gimbal exerted on engine thrust chamber,
ft-1b
Pe pressure at thrust chamber exit face (exhaust condition), 1b/sq ft
V(x,t) average velocity at which propellant mass is being transferred across
a section located at coordinate x, ft/sec
V(n,t) average velocity at which mass (exhaust gases) is being transferred
across a section in thrust chamber at coordinate 7
Ve velocity of exhaust gases at exit from thrust chamber, v(n=d,t),

ft/sec

Vo = V(0,t) ft/sec

w rate at which total mass of launch vehicle 1s changing, negative for
systems losing mass, K(O,t), lE;fEE
wy(x,t), wy(x,t) x- and y-components of distributed loading exerted on a
launch-vehicle structure by internal propellant flow,
1v/ft
w. (n,t), w. (n,t) x- and y-components of distributed loading exerted on
€% €y gimbaled thrust chamber by flow of exhaust gases,
1b/ft
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A(n-4) delta function
A dummy variable for x, ft

The force (per unit length) exerted on a launch-vehicle structure by the
local propellant mass transfer may be obtained from the information available
in reference 7. The results presented therein are obtained from momentum con-
siderations and are easily modified to include a gimbaled thrust chamber (engine)
and a modal representation for structural deformations. When such an extension
is made and the results transformed from an inertial (space-fixed) reference
frame, as used in reference T, to the rotating body frame used herein (fig. 1)
the x- and y-components of the distributed loading are found to be as follows:

wy(x,t) = - éi (x,) |-V(x,t) + Vg - Xog - 6 j{: Bi(x) qq(t) (c1)
i

wplest) = - Ll 8)| Vx,0) Z Bi(x) ay(t) + Uy + (x - xog)

+ Z g (x) q4(t) (c2)
1

where V(X,t) is the average (over the cross section) velocity at which propel-
lant mass is being transferred across the section at coordinate x. It should
be noted that V(x,t) is tangent to the deformed structural center line and

is positive in the direction of flow - that is, toward the origin x = O. The
quantity K(x,t) represents the rate at which propellant mass is being trans-
ferred across a section located at coordinate x and has the following
definition:

L
K(x,t) = f @%ﬂax (c3)

It is apparent from equation (C3) that K(L,t) = O whereas X(0,t) = w; that
is, the rate of mass flow at the gimbal point (into the thrust chamber) is w
and represents the rate at which the total mass of the launch vehicle is
changing. It should be noted that w 1is a negative guantity.

Along the longitudinal axis of the gimbaled engine nozzle the mass~-flow
rate is constant and equals w. The velocity 'V(n,t), however, undergoes a
pronounced change as the flow (exhaust gases) is expanded to the exit condition
at n = d. In addition, there is a force exerted on the thrust chamber due to
the difference between atmospheric pressure p, and the pressure of the exhaust

gases at exit pe. The pressure force —A(pe - Po) is included by means of a
delta function A(n-d), where it is assumed that the exhaust pressure is

37



uniformly distributed over the exit face. Hence, the x- and y-components of the
loading per unit length along the nozzle may be determined in a similar manner
and are given by the following two equations:

vo,x(n,) = - & {v(m) F ¥ - keg - 8 ) 93(0) 4,(8) - néEs - ) i qi(t)} . nl% - Y #i qi(tﬂ[é
i i i

- z ¢1(0) tii(t)}} * A{pe - 15 Aln-d) (ck)
1

e g (1st) = -W§{T(n,t)|:5 - ) i) qi(ﬂ Ty - (reg 1)+ ) #1(0) ds(e) + n{:é - ) i cai(tﬂ}
i

i i

i

- A(Pe - po)[ - Z ¢1(0) qi(til Aln-a) (c5)

It should be noted that 1 represents a running coordinate along the longi-
tudinal axis of the thrust chamber as measured from the gimbal point with a
positive sense in the direction of flow, that is, in the same direction as

V(Tht)-

With the results of equations (Cl) to (C5), it is possible to compute the
resulting forces and moments produced by the flowing propellants. The
x-component Fy of the total force exerted on the launch vehicle by virtue of
the propellant flow may be obtained by integrating the x-component of the dis-
tributed loading. Therefore,

L 0
Fp x = A we(x,t) ax + _/:1 Ve, x(n,t) dn (c6)

When the results of equations (Cl), (C3), and (C4) are substituted into equa-
tion (C6) and the integration performed, the following equation results:

Fp,x =vae + A(pe - Po)] + w(Vy - keg) - W z 91(0) q () - wad [a - z 1 (0) q_i(til

i i

+ wal% - Z ¢i(o) qi(tﬂ[é - z ¢;(0) qi(til (e7)

1

In a similar manner the y-component Fy is given by the equation

L 0
Fp’y = \/:) Wy(x:t) dx + /:i We,y(ﬂ;t) dn (c8)

With the aid of equations (C2), (C3), and (C5), equation (C8) reduces to the
following form:

38



%w{%ﬂmwﬂﬁzﬁmwﬂwwwmmwm”WWZMwwﬂﬂﬁZﬁmmﬂw”

1 i

If the distributed loadings (egs. (cl), (c2), (ck), and (C5)) are multi-
plied by the proper weighting functions and integrated, the propulsive pitching
moment MP’ jth generalized force Q,j ,D? and gimbaled engine moment Mg may be

obtained. For example, the moment Mp produced about the center of gravity by
the propellant flow is given by the following expression:

L L , 0
M, - Z[ S e 9460 a% ay(®) + [ = weg) vyl ax - [s - Z #.(0) qictﬂ J e st an

0 0o
= \/; (xcg + Tl) we’y(nlt) dn - Z ¢i(0) q.i(t) f; we’x(n)t) dT\ (Clo)

When the necessary substitutions are made and the integrations performed,
equation (C10) reduces to the following form:

¥p = Xcg[‘VVe *+ Afpe - Poﬂ[ - z ¢;(o) qi(t)i‘ - Ewe + Alp, - poi‘ >: #5(0) qy(t) + wé(xcg + d)2 - w(xeq * a) Z $5(0) a1 (%)
1 i
- W (xeg * d)[’é - Z $.(0) éi(til + RogVod - Whegly + wa z $1(0) ay(v) = wlvy - %og) Z $:(0) q.(t) + wé[z 34(0) qi(tﬂz
1 T
+ wdé[ﬁ - Z #3(0) qi(tﬂ Z #3(0) ay(t) - wd[ﬁ - Z #4(0) qﬁtﬂ [é - Z g;(0) dj(tj E #3(0) q4(t)
J
+ % wéaz[s - Z #:(0) qi(tje - % wdQI:é - Z ¢;(0) ii(tﬂ {a - Z gi(0) qj(t)]e - wxogdd -% wa®é
1
+ % wdzﬁ - z #;(0) é_i(t)i| + ep (c11)
1

where

L [
cp = j;L K(x,t) liv(x,t) Z Ba(x) ay(8) + Vy + (x - x0g)6 + Z #3(x) tii(til ax - Z {j; K(x,t) ¢1(x)|:-V(x;‘°) + (Ve - eg)

-8 Z ¢,j(x) qu(t;J dx}qi(t) (c12)
d

The generalized force associated with the jth bending mode duvue to the
flowing propellants is obtained in a similar manner and is given by the following
equation:

L 0 , o T
Qy,p = \/; ¢j(x) vy(X,t) dx + L |E$J(O) - n¢3(0{\ we,y(n,t) an ~ "/:i 'q¢'j(0)[5 - 2{ #1(0) qi(t% we’x(n,t) dn (c13)
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which reduces to the form

i 1

43,0 = B3(00y - 85(0) [wve + A(pe - p)][ - ) g qi(ﬂ - 5(0)(xeg *+ )8 + ;(0) ) £1(0) §4(®)
+ wa¢3(o)E% - z ¢:(0) éi(t?l'- W3(0)V + % wa®g}(0)6 - %wa%j(o)E, - Z #:(0) Qi(til

i i

h | ' 2 1 1 2
+§wea2¢;,(o)fs RO qim] -gwa%(o)[a -y gico) qim] E ) 8i60) qjuj pey (o)

i dJ

where

, .
°5,p = ]; K(x,%) ¢3(x)["’(x’t) z B1(x) as(t) + Vy + (x - xcg)8 + Z g, (x) cii(t)} ax (c15)

Finally, the moment about the gimbal exerted on the swiveling engine by
the exhaust gases is given by

0 0
My = j; e, y(n,t) dn + »/:1 nlE5 - z $1(0) qi(tﬂ Ve x(nst) an  (C16)
1

which integrates to

. 1 ] . - 1 2 3
My =-é—wd2{{5 - Z ¢;(0) qi(tii - % + %wdz[s - Z g,(0) qi(til {(:8 - z $;(0) c}i(tﬂ - % (c17)
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APPENDIX D

BENDING MOMENTS

The bending moment acting at any point along the structure of a booster
vehicle is determined by the loads summation method as discussed in reference 8.
Application of the method requires finding the lateral load per unit length and
integrating to find the resultant bending moment. The loading may be conven-
iently divided into four types: inertial, slosh, aerodynamic, and gravity.

The inertial loading requires knowledge of the acceleration vector of a
point on the vehicle structural center line. This vector is obtained by dif-

ferentiating the velocity vector V;, as given by equation (4). Thus,

N,

. . -

Vp = at—p + e(l? X Vp) (p1)
. o . red red .

where the unit vector Kk is formed from the cross product i x j. Equation (p1)

expands to the following form:

7, = ?[({rx - %eg) - 2 z Bi(x) aa(e) = B ) i(x) ay(8) - Vyb = (x - xcg)ﬂ + ?E’y + (% - xeg)P

i

+ Z gy (x) d;(¢) + (vx - 25:cg>é - 82 z g, (x) qi(t;J (p2)
I I

Only the y-component of the acceleration vector V; contributes to the lateral

inertial loading (less slosh) 17 In accordance with d'Alembert's principle,
this quantity is given by the following equation:

1(x,t) = —m(x,t)Efy (% = xeg)B + z Bi(x) () + (Vg - og)b - 6° Z ¢4 (x) qi(t)] (3)

i i

The slosh masses also contributed to the inertial loading. However, inclusion
of the slosh contributions in the bending-moment expression is simplified if the
spring and viscous damping forces are considered. Using this approach, each
slosh mass produces a concentrated force Fyx at its attachment point, which is

Fio = maihy + 2mayctihe (D4)
The gravity loading per unit length is given by the following equation:

1g(x,t) = -m(x,t)g cos © (p5)
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The distributed aerodynamic loading 1(x,t) is given by either equation (a3)
or (BL).

The bending moment produced at any station located by the coordinate
X=Xy 5 is determined by integrating the total lateral loading in the fol=-
2

lowing manner:
L
My on = u/\ (x - xb,n)(ZI + 1g + Z) ax + j{: U(Xk’xb,n)(xk - xb,n)Fk (D6)
Xb,n k
where U(xk—xb,n) is the unit step function and has the following definition:
| Uam) =0 (% < %5,0)

| V(= *p,n) =1 (*x 2 % n)

(D7)

By performing the indicatej substitutions in equation (D6), integrating, and

he bending-moment equation reduces to the form
/

|
My,n = Cb,l["y + (Vx - 2keg)d + & cos ﬂ + (On,2 + Ooj8)6 + ). G Cb,5,)81(%) * Co,afe * @)+ Oy 68
i

neglecting the 52 term,

+ 0y alE &) + z Ob,q;9;(8) * Z Cp,q,1(8) + z U(xk'xb,n)Enk(xk - xb,n)(wf;?\k + 2§kwk7\k)]
1 T 3

(p8)
where the coefficients are defined as follows:
Mass coefficients:
L
Cp,q = -d[‘ (x-xb,n) m(x,t) dx
%y n
L

Co,2 = - e (x'xb,n)(x - Xcgﬁ m(x,t) dx
,n

L
Cp 31 = -U/\ (X"Xb,n)¢i(x) m(x,t) dx

Xp,n

Momentum serodynamic coefficients:

L ' L
2 5'(x) . s(x)
Cb,a, = pSo _Vm v f (X - Xy n) dx + Vm,w f (x - Xb,n) dx
2 X 4 SO SO
b,n Xp,n
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L Yx L
Co,8 = Psovm,w[f (x - %p,n)(* - *og) SSS, bax s f (% - %,0) -Sé?ogd{i

*p,n xb,n
L
Cp,a = PSon,w[/; (x - xb’n) _Sé:_) %
b,n
L
oot [ el ) 42
b,n
L ' L
Co,qq = pSoEVl%,w f (x - xb’n) S_S(()_x)_ ¢i(x) dax - Vﬁ,w j;b (x - xb,n) %:)- ¢;(x) dx
Xb,n 3!
> L S(x) [
+ Vm,w j;Cb’n(x - xb,n) e ¢i(x) d{]
L ' L ,
Cb,(;f P55V ur ';/;b (x = xb,n) SS(EX) gi(x) ax + 2 \/; (x - xb,n) 'S_(si:—) ¢i(x) ﬂ
sn b,yn
L
sn

Quasi-steady aerodynamic coefficients:

L
Cp,q = aSe f (x - xb,n) cna(x,M) dx

Xpb,n
as, fL
c A e - - X x,M) dx
©,9 Vm,w Y x n(x Xb:n)(x CS) g (%5M)
2
Cb,(.l, = O
Gy 5 = O
L
¥
b,a; = aSo Lb (x - xb,n) @;(x) cncc(x,M) ax
,n
as, L
Cp,g; = - o~ f (x - Xb,n) g, (x) cna(x,M) dx
3 xb’n
Cb,ai 0
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APPENDIX E
SUMMARY OF EQUATIONS

This appendix summarizes the basic equations. Coefficients are defined
in appendixes A, B, and D.

Axial motion equation:

mely = m¥og *+ meVyd + me[eé Z #:(0) 4;(t) + 8 Z ¢:(0) qi(tﬂ - Se {2(3 Z #1(0) 45(¢) + & Z #:(0) q(t)

i i

+) Y #0) ¢3(o)[;i(t) 8,(6) + 4y() @,@ﬂ} : se,ll:zéé i - o582 ) 1(0) due) + 0 ) $i(0) (6
i

i J I

+8 z g;(0) qi(tﬂ + Z mk(eéi\k + Exk> - m g sin 8 - gS,Cp(M) + T
T 3

Lateral motion equation:

mt‘.fy = -mt(Vx - }'ch)é ~ O Z ¢1(0) Eii(t) + Se z ¢-_;(0) qi(t) - se,ls - Z mkxk+ é2 Z mAx - mg cos 6 + Cn’a(a, + a.w) + cn,éé
i 1 k k

3 3 3 . . 1
+ Cn,d(u +y) + Oy g8+ z Ca,q, () * Z Cn,g,41(t) + Z Cn,g, 3y (¥) - T 18 + T 2 #;(0) q (t)
i i i i

Pitch equation:

(Icg + Ig + mexgg + zsexcg)'e' = -icgé + me[({fx - ¥eg + 8 sin 9) z #:(0) q,(t) + xg Z $1(0) 4, (t) - Vyé Z #,(0) qi(t):|
i 1 1

+ Se[-(\'rx - %og + g sin e) Z #i(0) q(t) + Z #:(0) 4 (%) - xcg z $1(0) 4 () + vy Z $1(0) a;(t)
i i

+ v, Z z #5(0) #3(0) ay(t) éj(t{] * 8,1 [(W'lx - Xy + & 5in 9)5 + Xegb - V85 + Vybb
i

e Z £:(0) &,(5) - v, Z #1(0) qi(tﬂ . I[Z #1(0) ai(tﬂ $IE- ) mk[xk(xk - xeg)

k

- (i - g + & 010 0 + ] Ol + o) + G, 58 O, afd # ) + G, 4 ) Cmyqga(0)
i

(Equation continued on next page)
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+ Z Cn,q,4;(t) + Z O, &3 (8) + Ty y%egh - Teteg 2 #:(0) a,(¢) - 1, z ¢:(0) q () - 6 z myas(t)

i 1

s

- 26 z myay(t) q;(¢) - 6 z H.Jiqi(t) -8 Z mk7‘12: - 28 z mkxk)‘k - % z mk7‘k¢i(xk) qi(t)
i i k

k k 1

- 20

=[]

z mhye By (i) az(t) - 26 Z z mhBs () 4, (8) = mpVykog - z&cgé(mexcg + se)
1 ¥ 1

jth bending mode equation:

mydy(t) = -2mst jydy(8) = myafa,(e) = dgdy(t) + mya (£)6% + me[-ﬁﬂJ(O) + x0g001(0) - g5(0) z 91(0) dy() - (Vx - 2xcg)Bp,(0)
i

- &f;(0) cos {I * Se[-(ﬁx - og)$5(0) z 8,(0) ay(t) + B¢;(0) + g5(0) Z $1(0) dy(t) + B3(0)y - xoqP3(0)8
i i

+ ¢(0) Z $1(0) dy(t) + (Ve - 2kog)p;(0)8 + gB}(0) cos ﬂ + se,{({rx - ¥og)B3(0)5 - ¢J(o)'s] + Ie[-;aj(o)'e'
i

- #3(0) Z p1(0) fii(tﬂ + Ie,l[ﬁ(o)%' z e (i) T + 8 Z mNF3(%) + Oy, + o) * Cy,88 + Cy g(e + dy)
k

i K

*CyE8* ) Cyqu(8) + Cy,q,41(8) + ) C5,5,d;(¢) - T 1#;(0)8 + Tefy(0) #1(0) a4(t)
T T 1 ’ J
1 1

Gimbal engine equations:

)

-- S 2 [* T3 K t
b+ 2B 10,10 + wg 15 = Kewg f (Bc - B) at + + f T, 4t
) Ie,1i Ie,1 Jo

- 1 e . .. . . ] . .o
Ty = Ie,l z ¢i(0) qi(t) - Se,l(vx - xcg)S + Se,l(Vx = xcg) Z ¢i(0) qi(t) - Se,lvy + Se,lexcg
1 i

+ Ie,le = Se,l z ¢i(o) -q..i(t) - Se’l(vx - Z“Cg)é - Se’lg cos 6
1

Propellant slosh equation:

)\k + 2§k(.0k7.\k + (1)12{7\1{ = -ﬁy - (xk - Xcg).é - Z ¢i(xk) .(ii('t) - (VX - &cg)é
i

+ )\kéz + 67 Z ¢i(xk) qi(t) - gcos

I
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Control system equations:
. ) 5 ) o t
8o + 2§fwfbc + wEde = ao Kebe + a)f(wf + 2Kf§f)6e + Kpwlp L 6 dt

ee=ec-ef

8p = 6 + Z ¢:'L(xe) qi(t) + pl[é + Z ¢]'_(xé) di(tﬂ + potg

i i

m,w -
i ? i

ag = o + o + z ¢3:_(xa,) qi(t) - {,‘i—lgxa. - xcg)é + z ¢i(xa) éi(tzl
Bending-moment equations:
Mo, = Co,a[fy + (W - 2eg) + & cos ‘ﬂ + (oo, + Co5)8 + Z(%,;i * O, gy) () + Co,ala + aw) * G, g6
+ Cb,é.(&' + a,w)+ z Cb,qiqi(t) + Z Cb,;litii(t) + Z U(xk—xb’n)E:k(xk- x’b,n) (aikk + 2§ﬂikﬂ
1 i k
U(xk-xb:n) =0 (xk < xb:n)

aem,n) = 3 (o 2 %,0)

Miscellaneous equations:

2
Vm,w = \,;"m + Vv2: + 2VpVyy cos y

2 2
Vp = {Vx + Vy

V, sin y

Ay = sin‘l< ki )
Vi, w

L6



h(t)

r(t)

)

b/\t Vp sin y dt
0

ulﬁt V., cos y dt
m
0

il

1.2
4= Eme’w
+ W2
s v,
iy,

T =Ty 1 = Ao,
2

Te

Ty - (8 + Ap)po
= iy

= -lel + Alpe,l
Tv,l

Ty

- woVp * Ao o
=Ty,1

W = Ol
vm,w
M= V)
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11.
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